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Abstract: An elaborated form of the Jacobsen-Stockmayer theory of cyclization equilibria is used to calculate the cyclization 
constants Kx for the x-membered peptide sequences poly(D-Ala-L-Ala) (I), poly(D-Pro-L-Ala) (II), poly(Gly) (III), poly(L-
Pro-L-AIa) (IV), poly(D-Ala-D-Ala-L-Ala-L-Ala) (V), and poly(L-Ala) (VI). Cyclics with 6-20 amino acid residues are con­
sidered, the peptide bond being in the trans planar position. According to this theory, Kx = W[Q)[Il\(\)\/'acxNA, where W{t) 
is the probability density function for the chain vector r; To(T) is 'he probability distribution, when r = 0, of y = cos A0, Af? 
being the angle between a hypothetical bond (Ix + 1) and bond 1; <rQX corresponds to the symmetry number of the ring; 7VA 
is Avogadro's number. The evaluation of W(T) is performed in different approximations. The required configurational aver­
ages for computing the density distribution W(t) and the angular correlation factor To(I) are obtained by Monte Carlo tech­
niques. The statistical weights for discrete values of ̂ i and \p[ for the individual amino acid residues were obtained by conforma­
tional energy calculations using semiempirical potential functions. From this theory, the formation of rings is predicted to be 
very unfavorable for VI, whereas sequence I has a high ring closure probability. The other sequences have intermediate Kx 
values and show decreasing tendency to cyclize in going from II to VI. Kx decreases with the number of residues in the ring. 
Strong deviations of W(r) from Gaussian distribution are indicated, except for the racemic sequences I and II. The deviations 
depress the value of Kx considerably. Similarly, the angular correlation is found to be unfavorable in nearly all cases. As a gen­
eral result, for chains which take on extended conformations as expressed in a large characteristic ratio Cx and persistence vec­
tor a, the formation of a ring is difficult. By taking poly(Gly) as standard, the cyclization constants Kx for x = 10 (20) are 
found to be 4 (5), 1.02 (1.7), 0.09 (0.08), 0.017 (0.06), and 0.01 (0.01) times the value for poly(Gly) for sequences I, II, IV, 
V, and VI, respectively. According to these results, the formation of cyclics should be easy for the regularly alternating D,L se­
quence and for chains containing the flexible GIy residue, whereas sequences of the all- L-AIa type are expected to have a negli­
gible tendency to cyclize. These predictions are shown to be in good qualitative agreement with observation. From these results, 
the density distribution W(0) of the end-to-end distance r and the angular correlation of chain ends are major factors in deter­
mining Kx. 

Cyclic peptides are of particular interest because many 
biologically active peptides are cyclic compounds. Further­
more, recent investigations have shown that the formation of 
cyclic peptides in the polymerization of amino acid A -̂car-
boxylic anhydrides is a common feature.1 Despite the fact that 
the conformation of several biologically important cyclic 
peptides has been elucidated by experimental and theoretical 
methods,2-3 no systematic investigations have been performed 
concerning the equilibrium concentration of cyclic species with 
linear peptide chains. The equilibrium concentration reflects 
the propensity of linear chain molecules to undergo a cycli­
zation reaction. Those investigations have impact not only in 
predicting the equilibrium concentration of cyclic rings but also 
in delineating the structural features of various peptide se­
quences in respect to the tendency of polypeptides to form a 
ring, and provide a theoretical basis for the conception of 
synthesis of cyclic compounds. 

In order to undergo a cyclization step, two requirements are 
necessary, (i) Atom 3x - 1 in Figure 1 must be situated at a 
distance from atom 0 equal to the length of the anticipated 
bond 2x (joining atom 3x - 1 and 3x), i.e. vector r must be 0. 
(ii) The direction of the bond to be formed, 3*, must yield 
acceptable bond angles at atoms 3x - 1 and 0. The former 
requirement is taken into account by the classical Jacobson-
Stockmayer theory, the latter in recent theory.4 

In a series of three papers, we calculated the equilibrium 
constants Kx of poly(dimethylsiloxane)5 and poly(6-amino-
caproamide),6 applying an elaborated form of the Jacobson-
Stockmayer theory of macrocyclization equilibria.4 The new 
theory includes the angular correlation of chain ends, expressed 
as a correlation factor 2To(I), and gives special attention to 
the evaluation of the density distribution for chains with in­
termediate size, where the deviation from Gaussian distribution 
can be large. Angular correlations and deviations from 
Gaussian distribution were major factors in improving the 
classical theory of Jacobson and Stockmayer.7 

In this paper, we calculate Kx for polypeptides with different 
amino acid sequences on the basis of this new theory. Specifi­

cally, this includes the calculation of the density W(O) for 
chains with small end-to-end distances in different approxi­
mations and the angular correlation factor 2To( 1). The amino 
acid sequences treated in this paper reflect the main structural 
features of many naturally occurring and synthetic cyclic 
peptides. Six different sequences are investigated: poly(L-Ala), 
poly(D-Ala-L-Ala), poly(Gly), poly(D-Ala-D-Ala-L-Ala-L-
AIa), poly(L-Ala-L-Pro), and poly(D-Ala-L-Pro). In all cases, 
the peptide bond is assumed to be in the trans planar posi­
tion.8 

Theory of Macrocyclization 
The theory of macrocyclization in its elaborated form has 

recently been published;4 therefore, only the main equations 
are given here. 

Consider the cyclization process: 

-Mx+y-—-My-+ C-Mx (1) 

where -Mx+y- and -M^- are chain molecules comprising 
sequences of x + y and y repeating units, respectively, and 
C-Mx is a cyclic compound with x units. The nature of the 
terminal groups, expressed by dashes, is immaterial; yet, the 
unspecified terminal groups in the species -IVLy- and -Mx+y-
must be chemically equivalent. 

At equilibrium conditions, the cyclization process is gov­
erned by the cyclization constant: 

Kx= l-My-][c-Mx]/[-Mx+y-] (2) 

where Kx measures the propensity of cyclization. According 
to a relationship established by Jacobson and Stockmayer: 

Kx = [C-Mx] (3) 

in the limit of high extents of reaction. Hence, Kx measures 
the propensity for cyclization and equates to the concentration 
of the cyclic compound when the concentrations of -My- and 
-Mx+y- are equal. 

We consider the cyclization process in Figure 1. By elabo-
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Figure 1. Polypeptide chain in the reference frame of the first amide bond. 
AB denotes angle between the direction of the hypothetical (3* + 1 )st bond 
and the first bond. 

rating the Jacobson-Stockmayer theory to include angular 
correlations of chain ends we get the expression: 

Kx = 2 ̂ (0 ) r„ ( I ) A C ^ A (4) 

where W(t) is the probability of the value r for the end-to-end 
vector per unit volume; y = cos A8 corresponds to the bond 
angle between the first and the hypothetical bond 3x + 1, 
dotted in Figure 1; hence, To(I) is the probability that 7 as­
sumes the specific value, namely 7 = 1 , and therefore Ad - 0 
for chains with r = 0. <rCA. is the symmetry number and TVA is 
Avogadro's number. The direction correlation distribution 
Tr(7) is expanded in the Legendre polynomials Pk (-/)• For the 
circumstances of immediate interest, r = 0 and 7 = 1 (Figure 
1) we get: 

2T0(I)= t (2k+\)(Pk)r=<s (5) 
k = 0 

where (Pk) r are averages of the polynomials over all config­
urations having the specified value of r. {Pk) r is given by: 

{Pk)l = 2~lfr • • • fP"M e*V(rE\l\lkT) d{l}/dr 

(6) 

where (Ij is the set of all skeletal bond vectors 1 to 3x + 1, and 
the integrations include all configuration space jlj in which the 
chain vector spanning bond 1 to 3x conforms to the value r. The 
configuration integral subject to the same conditions is: 

Zr= £ . . . f cxp(-E\l\/kT)d\l}/dT (7) 

Fourier inversion allows (Pk) r=o to be expressed as: 

(Pk)1=O= ( Z r = 0 / Z ) - ' ( 3 / 2 ^ ( r 2 » 3 / 2 ^ / 0 - (lyk;2 

+ (DV**--] w 
where 

A o = (Pk) 

f - (Pkr2> / p v 

fk;2--^--<Pk) 
_ (Pkr*) 1 0 < / y 2 ) 5 

A - 4 - 1 ^ ~ j ^ j y - + -(Pk),ctC. (9) 

In eq 9, (Pk) denotes Pk averaged over all configurations re­
gardless of r, and Z is the configuration integral likewise 
without restriction on r. 

The density distribution of vector r is given by W(r) = ZxJZ. 
In the approximation that W(r) is Gaussian: 

Z r = 0 /Z = W(O) = (3/2x(r2»V2 (10) 

The density distribution can be approximated to any desired 
degree by the Hermite series 3i(x)? which for r = 0 is: 

JV(O)= 1 + 3 -5^ 4 + 3.5.7*6 + . . . (H) 

where 

£4 = -(l/23)(l-3<r4>/5</-2>2) 

S6=-( l /2 3 -3! ) [3( l -3<r*) /5<r 2 > 2 ) 

- (1 - 32<r6>/5 -7</-2)3)] ( 1 2 ) 

Then: 

(Pk)r=0 = im0)]-l[fk;0 ~ 3/2A-2 + . . . ] (13) 
The quantities (Pkr

2P) are estimated by resorting to Monte 
Carlo methods9 using conditional probabilities deduced from 
a suitable set of rotational states for analysis of the configu-
rational statistics. 

Basis of Computations 
A polypeptide chain in a conformation approaching the 

requirements for cyclization is depicted in Figure 1. The 
coordinate system of reference is defined by the C(O)-N bond 
(X axis); the Y axis is in the plane of the bonds C(O)-N and 
N - C with the positive direction chosen to form an acute angle 
with the N-C" bond. In order to form a ring, the dotted hy­
pothetical bond 3x + 1 must coalesce with bond 1 (joining 
atom Oand 1). 

Bond angles and bond lengths are assigned the values used 
previously.10-11 The length of the virtual bond of the trans 
peptide unit, spanning consecutive C* atoms, is 3.80 A.10 

Conformational energy calculations were performed using 
semiempirical potential functions, including terms corre­
sponding to bond torsional strain, van der Waals repulsion, 
London attractions, and electrostatic interactions between 
nonbonded atoms and groups as described previously.10-12 In 
the case of X-Pro sequences, the empirical conformational 
energy program for peptides (ECEPP) was used.13 Average 
quantities such as the square of the mean end-to-end distance 
(r2) and the persistence vector a14 calculated with both sets 
of parameters10'13 for poly(Gly), poly(L-Ala), and poly(L-Pro) 
differed by no more than 10%. 

All calculations were performed at a temperature of 25 0C 
for chains with 6 < x < 20. The required averages were 
evaluated by summing over discrete values of ip/ and 1/7 using 
30° intervals if not specified otherwise. Conformations for 
which E{tpi,^i) exceeds its minimum value by more than 4.0 
kcal mol-1 were omitted from the sums inasmuch as their 
contributions turned out to be insignificant. The quantities of 
interest, i.e. the averaged Legendre polynomials (Pk) r=o and 
the density W(O) in different approximations, were obtained 
using Monte Carlo procedures as follows. On the basis of sets 
of n computer generated random numbers, the state of each 
interdependent ^ 1 - pair was identified with an interval of the 
numerical range corresponding to the Boltzmann factor for 
this particular conformation. 

Peptide sequences containing Pro residues cannot be treated 
as totally independent units. Owing to the geometry of the 
pyrrolidine ring, Pro restricts the conformation space of its 
predecessor. Therefore, in the conformational energy calcu­
lations for obtaining the Boltzmann factors for individual 
conformations of residue X,- in a X,-Pro,+ i-dipeptide, all in­
teractions within this unit were taken into account, i.e. inter­
actions of atoms within residue X,- with the pyrrolidine ring 
of Pro,.+ i, precipitated by rotation about #• and i/-,. In contrast 
to a Pro-Pro unit, the different puckering of the pyrrolidine ring 
turned out to be of minor importance for the conformational 
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Table I. Characteristic Ratio Cn = (r2)/nl2 and Persistence 
Vector a = (r) for the Amino Acid Sequences I-VI (See Text) 
with n = 20 Residues 

I: 
II: 

III: 
IV: 
V: 

VI: 

Sequence 

(D-AIa-L-AIa) 
(D-Pro-L-Ala) 
GIy 
(L-Pro-L-Ala) 
(D-AIa-D-AIa-L 
L-AIa 

-AIa- L-AIa) 

C20 

0.73 
1.41 
1.89 
3.26 
3.62 
6.45 

»20 

4.08 
5.9 
6.4 

10.7 
12.0 
21.0 

characteristics of its predecessor in an X-Pro unit. Hence, the 
proline ring was taken in the "down" conformation with (ppro 
fixed at —75°, which corresponds to the ring conformation with 
minimal internal energy.'3-'5 Because of the independence of 
the pair <pi/\pj from \ppro, the Boltzmann factors for residue X,-
preceding Pro,+ \ were obtained in the customary way from the 
two-dimensional energy surface as a function of <pi and \p, by 
including the interactions with the following Pro ring. The 
summation over the conformation space was done in this case 
by using 10° intervals for <̂ pro (for the energy map of Pro) and 
the if/, \pi pair of its predecessor (for the energy map of residue 
X/). 

Conformational Energy Diagrams 
As the propensity for cyclization is intimately related to 

average chain dimensions, i.e. to the extendedness of the chain 
molecule in the random conformation, the energy maps of the 
single residues serve as a basis for the interpretation of the 
cyclization equilibria constants, computed according to the 
theory presented above. Therefore, the main features of the 
relevant energy maps will be shortly discussed. The energy map 
of GIy obtained by methods described above has four pro­
nounced energy minima, corresponding to g±g=F and g±g± 

conformations for <p/\p. Specifically, the ±=F quadrants of the 
energy surface account for ca. 65% and the ±± quadrants for 
ca. 35% of the residue partition function. Owing to the relative 
symmetric energy surface and to the large accessible confor­
mation space, GIy is expected to be very flexible. This is con­
firmed by a low characteristic ratio Cn and a small value of the 
persistence vector a, as shown in Table I, for (GIy)2O- Contrary 
to GIy, Ala has a much more restricted conformation space. 
Though there are three domains of low energy, 93% of the 
residue partition function is comprised by one region, which 
corresponds to an extended conformation. Consequently, Ala 
is much stiffer than GIy. This is confirmed by a high value of 
Cn and a (see Table I). The energy map of a D residue is ob­
tained by reflecting the L residue map through its center, i.e. 
the signs of the rotation angles are reversed. Owing to this 
symmetry of a D and L residue, the racemic sequence D.L-Ala 
is very compact, as can be realized from the low values of Cn 
and a. 

Due to the five-membered ring, the rotation around <p is 
restricted in Pro; when the ring is taken in the "down" con-
formation,<ppro is fixed at — 75°.13 Consequently, the energy 
map of Pro is one-dimensional, i.e. a function of ^pro only. The 
energy diagram has two minima at \j/\ =* —50° and ^2 — 145°. 
The minimum at ^2 comprises nearly 70% of the partition 
function whereas the former one accounts for ca. 30%. Thus, 
the statistical weight of the more compact conformation (\p\) 
is considerably higher in the case of Pro compared to Ala. 
Substitution of an L-AIa by an L-Pro residue in a poly(L-Ala) 
chain should consequently decrease the chain dimensions. 

The Probability Density W(O) and Its Influence on Kx 

The evaluation of W(O), required for the calculation of 
(Pk) r=o as well as for Kx, is difficult for short chains where 
the deviation from Gaussian distribution is large. In the fol­

lowing, we first calculate W(O) assuming Gaussian distribu­
tion; second, W(O) is obtained in higher approximation by 
scalar Hermite expansion described in detail elsewhere.9 Third, 
W(O) is estimated using a direct Monte Carlo procedure. 

(1) Gaussian Distribution. For r = 0 the Gaussian density 
distribution equates to: 

W(O) = (3/'2TT (r2))^2 

The square of the average end-to-end vector, (r2), is obtained 
by Monte Carlo generation of 30 000 chains. To check the 
accuracy of the Monte Carlo procedure, (r2) was evaluated 
also by exact matrix multiplication methods10 for poly(L-Ala) 
and poly(GIy), using averaged transformation matrices ob­
tained from summation over 30° intervals of <#• and \p(. In both 
cases, (r2) for chain lengths investigated in this paper, i.e. x 
= 6-20, differed less than 3%, thus confirming the Monte 
Carlo result. 

(2) Scalar Hermite Expansion. In applying several higher 
approximations of W(O) in an earlier study,5 truncation of the 
scalar Hermite expansion at g4 gave best agreement with the 
other approximations, namely the direct Monte Carlo method 
and the three-dimensional Hermite expansion. For further 
improvement of W(O), many more terms would have to be 
included, making this method impractical. Therefore, in the 
present investigation, we truncate the series expansion in eq 
11 at £4, as before. The quantities (r2) and (rA) are obtained 
by Monte Carlo generation of 30 000 chains. 

(3) Direct Monte Carlo Method. Here, the density in the 
vicinity of r = 0 was calculated by generating 30 000 Monte 
Carlo chains, the number of chain termini falling within a 
sphere of radius 5r about the origin being divided by the volume 
of the sphere; r is chosen to be 0.3 (/-2)1/2 if not otherwise 
specified. 

The Angular Correlation Factor 2Fo(I). The angular cor­
relation factor 2Fo(I) was evaluated according to eq 5. The 
averaged Legendre polynomial (Pk) r=o with k = 1,2,.. .,5 
and arguments 7 = cos A0 over all configurations for which 
r = 0 were obtained from eq 8 and 9 by Monte Carlo genera­
tion of the moments (PkT1P) without restriction on r. Again, 
30 000 chains were generated for each sequence and chain 
length. The Hermite series Hi(Q) required in eq 13 was trun­
cated at #4. 

Results 
The equilibrium constant Kx is calculated according to eq 

4; Kx is evaluated first on the basis of W(O) in different ap­
proximations, neglecting angular correlations, i.e. for 2F0(I) 
= 1. then, the angular correlation factor is additionally taken 
into account. 

(1) PoIy(GIy). Kx calculated assuming Gaussian distribution 
of W(r) is represented by curve 1 in Figure 2. Curves 2 and 3 
correspond to the scalar Hermite series expansion truncated 
at g4 and to the direct Monte Carlo procedure, respectively. 
Both higher approximations indicate a departure from 
Gaussian distribution throughout the investigated range. As 
a consequence, Kx is lowered by factors of ca. 1.7, 1.4, and 1.2 
for x = 6, 10, and 20, respectively. Curves 2 and 3 are in ex­
cellent agreement for x > 6. Curve 4 of Figure 2 will be dis­
cussed later. In Figure 3 we show (P1)^0 calculated with 
truncation of eq 13 at the terms/ i^ of the indicated rank 2s 
and plotted against x. The error bars represent twice the 
standard deviation am of the mean, embracing a confidence 
limit of ca. 95%. The first term of eq 1, i.e./^o, is zero for all 
x. By including the second term, / i ; 2 , (P\)r=o is rendered 
negative throughout;/i;4 decreases (/Vr=O further, but its 
influence on (P\)r=o vanishes beyond x = 12. The next term, 
/i;6, has no contribution to (Fi )r=o for all x. Hence, terms up 
to and including/i;4 suffice to determine (Pi )r=o for x > 6. 
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Figure 2. Cyclization equilibrium constant Kx plotted on log scales against 
the number of amino acid residues x for poly(Gly). Curves 1, 2, and 3 
correspond to different approximations for W(O), with neglect of orien-
tational correlations between terminal bonds: curve 1, spherical Gaussian; 
2, Hermite series expansion truncated at g4; 3, direct Monte Carlo method, 
curve 4 is calculated according to eq 4, including departures from Gaussian 
distribution and angular correlations (for details see text). 
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Figure 3. Averaged Legendre polynomial of first-order {Pi )r=o for po-
Iy(GIy) calculated with truncation of the series expansion in eq 13 at the 
term/i;2j of the indicated rank 2s. Error bars denote 2am limits. 

The Legendre polynomials of higher order, (Pk> r=o up to k 
= 5, calculated similarly from 30 000 Monte Carlo chains, 
have no contribution to 2PoO), i.e. within the error limit of 2trm 
they are indistinguishable from zero. Hence, 2Fo(I) is ade­
quately represented by eq 14 for poly(GIy). 

2r 0 ( l ) = 1 + 3<P,) r=0 (14) 

The constants Kx were evaluated according to eq 4, using 
eq 11 truncated at g4 and eq 14 for W(O) and 2Fo(I), respec­
tively. The symmetry number <rcx equals x. The result is shown 
by curve 4 in Figure 2. The inclusion of angular correlations, 
being negative for all x, leads to a further depression of Kx. 
Specifically, Kx calculated by ignoring angular correlations 
is lowered by factors of 4.6, 1.5, 1.4, and 1.2 for* = 6, 8, 10, 

1.0 
Log x 

Figure 4. Log Kx for poly(L-Ala) against the number of residues x with 
neglect of angular correlations: curve 1, spherical Gaussian approximation 
of W(Q); 3, direct Monte Carlo method for W(O). 

and 15, respectively. For x > 15, the influence of angular 
correlations is very small. The relative moderate deviations 
from Gaussian distribution, the high density at r = 0, and the 
rapidly decreasing angular correlation with chain length reflect 
the high flexibility of this polypeptide chain, as was expected 
from the energy map discussed above. As a consequence, rings 
containing GIy residues should be easily formed. These pre­
dictions will be related to experimental results in a later section 
of this paper. 

(2) PoIy(L-AIa). As before, Kx was first calculated according 
to eq 4 ignoring angular correlations. The results are repre­
sented by curves 1 and 3 in Figure 4. The values of Kx in 
Gaussian approximation are lower compared to poly(Gly) by 
factors of ca. 4 and 6 for x = 10 and 20, respectively, indicating 
a low density at r = 0. This is a direct consequence of the 
greater Cx. Furthermore, a strong deviation from the spherical 
Gaussian distribution is indicated by curve 3, which corre­
sponds to the direct Monte Carlo method. This result is in 
harmony with recent calculations by Conrad and Flory on the 
density distribution of poly(L-Ala),11 where departures from 
Gaussian behavior were shown to be significant even at x = 
40. Because of the low density at r = 0, which is a consequence 
of the extendedness of this peptide chain, the moment method 
to evaluate W(O) must fail in this case for short chain lengths. 
For the estimation of W(O) we must therefore rely on the 
Monte Carlo method. To this end, different spheres aT were 
chosen for determinating Jf(O). 

When a,, was taken to be 0.3 (r2> V2 and 0.5 (r2>'/2, sam­
pling ca. 1 and 5%, respectively, of the total population, both 
estimates for W(O) were different by less than 10% for x > 7. 
Therefore, curve 3 is believed to be a good approximation. 
Taking these values, the depression of Kx due to the departure 
from Gaussian distribution amounts to factors of ca. 17, 8, and 
3 for x = 8, 12, and 20, respectively. The results for the eval­
uation of the angular correlation factor 2Fo(I) are shown in 
Figure 5. 

The first term in (P1 >r=o,/i;o (Figure 5), is positive for all 
x. The following terms,/i ;2,/i ;4, and/i ; 6 , render (P\)r=o 
continuously more negative and all of them have a significant 
contribution to (Pi)n=O throughout the range of x. Alternating 
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6 8 10 12 16 20 

Figure 5. (Pi >r=0 for poly(L-Ala) with truncation of eq 13 as indicated. 
The Hermite expansion ft(Q) in eq 13 was substituted in this case by the 
direct Monte Carlo approximation for evaluating W(O). 

lower and higher values of (/Mr=o are obtained for small x. 
The next term,/i;s, contributes to {P\ )r=o only for x < 10 and 
virtually vanishes for x > 10./i;io, not shown in Figure 5, still 
is significant for x < 10, (/Mr=o being rendered even more 
negative. For fully determining (/Mr=o> more terms in/i ;2j 
would have to be included; the evaluation at these higher terms 
is outside the scope of the present calculations. Hence, for x 
> 10, (/Mr=O is determined by terms up to/i ;6, whereas for 
x < 10, (PiJr=O does not converge satisfactorily. Nevertheless, 
a strongly negative value of (P\)r=ofor x < 10 is clearly in­
dicated. 

Legendre polynomials of higher order, i.e. (Pk > r=o with k 
up to 5, have also been computed. All higher polynomials were 
positive throughout the range of x, their magnitudes being 
close to the error limit of 2am. 

For (ZMr=O and (/Mr=o, a medium value of ca. 0.03 ± 0.02 
is indicated, individual points showing considerable scattering. 
The higher terms, (ZMr=O and (^Mr=O, w e r e practically in­
distinguishable from zero for x > 15. The addition of the 
higher terms in (/Mr=oto (FOr=O leads to a value of 2Fo(I) 
very close to zero. For x = 6, the higher polynomials of 
(Pk) r=o are consistently more positive than for other chain 
lengths indicating much higher values for 2Fo(I). Yet, the 
Legendre polynomials did not converge satisfactorily for this 
small chain length, making a reliable estimate for 2Fo(I), and 
hence for Ke, impossible. Due to the relatively large errors in 
the higher polynomials, (Pi1) r=o, a quantitative evaluation of 
2Fo(I) (and consequently of Kx) is impossible. Nevertheless, 
a maximum value of Kx can be estimated. For example, taking 
the maximum values of (Pk) r=o for A: > 1 within the probable 
error including terms up to k = 5, 2Fo(I) takes on values be­
tween 0 and 0.2 throughout the range of 10 < x < 20. 

In contrast to poly(Gly) and the polymers treated earlier, 
higher terms in (Pk) r=o are important for the determination 
of the angular correlation factor 2Fo(I). 

For reasons mentioned above, only maximum values for the 
cyclization constants Kx are calculated. The negative angular 
correlation depresses the Kx values of poly (L-AIa) very dras­
tically. Specifically, Kx taken from curve 3 in Figure 4 is re­
duced by a factor that does not exceed 0.20 when angular 
correlations are included. The very low Kx values of poly(L-
AIa) are a consequence of the pronounced tendency of this 
residue to adopt extended conformations, which makes a cy­
clization reaction very unfavorable due to a low density W(O). 

-0.5 

-1.5 

2.0L 

0,8 1.0 1.2 
Log x 

Figure 6. Log Kx for poly(D-Ala-L-Ala) against the number of residues 
x. The different approximations for W(O) are shown by the straight line 
labeled 1, 2, 3, as before. Curve 4 corresponds to log Kx calculated from 
eq 4. 

Figure 7. (ZMr=O for poly(D-Ala-L-Ala). The labeling of the curves has 
the same meaning as in Figure 3. 

The large value of the positive X component of the persistence 
vector a of ca. 16 is a further indication that the angular cor­
relation factor 2Fo( 1) is expected to be strongly negative. This 
has been rationalized in our previous paper.4 Hence, the 
present calculations indicate that the tendency of poly(L-Ala) 
chains to cyclize is extremely low. 

(3) PoIy(D-AIa-L-AIa). The constants Kx calculated from 
eq 4 for the different approximations of W(O) by setting 2Fo( 1) 
= 1 are plotted against x in Figure 6. All three approximations 
gave identical results, i.e. the alternating D,L-polypeptide chain 
obeys Gaussian distribution for all x > 6. The Kx values are 
still considerably higher than those obtained for poly(Gly). 
This result can be explained by the very low characteristic ratio 
and the small persistence vector a, both values being only ca. 
one-tenth of the corresponding quantity for the stereoregular 
peptide chain (see Table I). 

Figure 7 shows (/Mr=O calculated according to eq 13 with 
terms/I;2J truncated at 25, plotted against x. The first term, 
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Figure 8. Log Kx for poly(D-Ala-D-Ala-L-Ala-L-Ala) against x. For details 
see Figure 2. 

/i ;o, has a maximum at x = 6 and a minimum at x = 9. For x 
> 10, the term converges to zero. By inclusion of/i;2, the 
maximum and minimum get more pronounced, (Pi)r=o 
adopting positive and negative values, alternating in steps of 
three residues. The next term,/i;4, contributes to (Pi)r=o only 
for x = 6 and x = 7 and vanishes for x > l.fi-6 is significant 
for x = 6. Hence, terms up to and including/i;2 suffice to de­
termine (Pi )r=o for x > 7, whereas for x = 7 and x = 6 one 
or two, respectively, more terms must be included. 

The Legendre polynomials (P*) r=o of higher order up to 
k = 5 have no contribution to 2Fo(I). For x > 6, the angular 
correlation factor is determined by eq 14, whereas for x = 6, 
(P2)Ji=O and (P3)r=o, not shown here, contribute significantly 
to 2Fo(I), being also positive. The values of 2Fo(I) for* = 6 
are 2.5, 3.14, and 3.32 after truncation of eq 5 at k = 1,2, and 
3, respectively. Higher polynomials of (Pk)r=o were undis-
tinguishable from zero. 

The constants Kx calculated using eq 14 are shown by curve 
4 in Figure 6. The inclusion of angular correlations increases 
Kx for x = 6 and x = 7 by factors of ca. 3.3 and 1.8, respec­
tively. For x = 9 and 10, Kx is lowered by factors of 0.55 and 
0.7. For all other chain lengths, 2Fo(I) is unity within the error 
limits. 

With regard to this result, the formation of cyclics of race-
mic sequences with alternating D1L sequences should be very 
favorable. 

(4) PoIy(D-AIa-D-AIa-L-AIa-L-AIa). This sequence shows 
close similarity to the poly(L-Ala) chain. As could be expected 
from the large values for the characteristic ratio and the per­
sistence vector (see Table I), a relatively strong deviation from 
Gaussian distribution is found; as a further consequence of the 
low density at W(O), the higher approximations are in poor 
agreement for x < 20 (see Figure 8). Again, the direct Monte 
Carlo estimate of W(O) gave consistent results, when different 
spheres of o> around the origin were taken. 

The angular correlation factor 2Fo(I) is dominated by the 
first polynomial, (Pi)r=o, which is strongly negative. Higher 
terms in (Pk) r=o were positive throughout and slightly larger 
than the error limit of 2<rm, similar to poly(L-Ala). Hence, 
2Fo(I) is determined only when higher polynomials of 
(Pk)r=o are included. The exact value of Kx is difficult to 
obtain because of the large errors involved in the calculation 

1.0 
Log x 

Figure 9. Log Kx for poly(L-Ala-L-Prod) against x. For details, see Figure 
2. 

Table II. Log Kx for the Peptide Sequences I-VI (Compare Table 
I) for Different Chain Lengths x, Calculated According to Eq 4" 

Sequence 

I 
II 

III 
IV 
V 

VI 

6 

-0.33 (75) 
-1.61 (4) 
-2.21 (1) 
-2.69max (0.33) 
-3.02max(0.15) 
-3.95max (0.006) 

x = 
10 

-1.60(4) 
-2.19(1.02) 
-2.20(1) 
-3.24max(0.09) 
-3.44max (0.017) 
-4.19max(0.01) 

20 

-2.04 (5) 
-2.55(1.7) 
-2.78(1) 
-3.86raax (0.08) 
-3.98max (0.06) 
-4.67max(0.01) 

" The numbers in parentheses refer to the propensity of cyclization, 
when GIy is taken as standard. Numbers labeled "max" correspond 
to estimated maximal values of Kx. (For details see text.) 

of (Pk) r=o when k > 1. Very small values of 2Fo( 1) are in­
dicated, leading to strong depressions OfKx. Maximum values 
of Kx are given in Table II. 

(5) Poly(L-Ala-L-Pro). The insertion of L-Pro residues in a 
poly(L-Ala) chain leads to considerably higher values of Kx 
(see Figure 9). This is a direct consequence of the reduced 
average chain dimensions (see Table I) due to the larger ac­
cessibility of the minima at \pi for Pro compared to Ala, as 
pointed out above. The depression of the Kx values due to de­
viations from Gaussian distribution amounts to factors of ca. 
2.5 and 1.3 for x = 10 and 20, respectively. The agreement 
between the direct Monte Carlo estimate and the Hermite 
series expansion for getting W(O) is within less than 10% for 
x> 12. 

In calculating 2Fo(I), polynomials (Pk) r=o up to /c = 3 had 
to be included, similar to poly(L-Ala). Again, the angular 
correlation was negative for all x, (Pi )r=o being the dominant 
term. Kx values calculated from eq 4 indicate that the incor­
poration of L-Pro residues raises the Kx values of an all 
poly(L-Ala) chain by a factor of about 6. 

(6) Poly(D-Ala-L-Pro). The results for this sequence re­
semble those of poly(D-AIa-L-Ala). Yet, in this case a signif­
icant but small deviation from Gaussian distribution for x < 
20 is indicated and the values of Kx obtained from eq 4 by 
setting 2r o ( l ) = 1 are lower by a factor of ca. 3 for all x in­
vestigated (see Figure 10). Again, the angular correlation 
factor 2FoO) is alternating, having positive values for x - 8 
and 12. For x = 6,10, and 14, minimum (negative) values are 
obtained. 2F0(I) is fully determined by eq 14. Values for Kx 
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are shown in Table II. Though the Kx values are significantly 
lower compared to the racemic all- Ala sequence, the pro­
pensity to form a cyclic compound is still very high. 

Discussion 
The present calculations indicate that the ring closure 

probabilities, expressed in the equilibrium constant Kx for the 
different peptide sequences investigated here, span a very large 
scale. The Kx values obtained on the basis of the density W(T) 
for r = 0 by neglecting angular correlations, i.e. 2Fo(I) = 1, 
reflect the extendedness of the different sequences as expressed 
in the characteristic ratio given in Table I. With the values of 
Kx from curve 3 in Figures 2,4,6,8,9, and 10, corresponding 
to the direct Monte Carlo estimates of W(O), the following 
results are obtained. When poly(Gly) is taken as reference, the 
propensity for ring closure for poly(D-Ala-L-Ala) is higher by 
a factor of ca. 5, whereas it is lower for poly(L-Ala) by factors 
of ca. 50, 30, and 15 for x = 6, 10, and 20, respectively. The 
incorporation of L-Pro residues in a poly(L-Ala) chain raises 
the Kx values; however, Kx is still lower by a factor of ca. 3 
compared to poly(Gly) for the regularly alternating L-Pro-
L-AIa sequence. On the other hand, the substitution of the 
D-AIa residue by a D-Pro residue lowers Kx by a factor of ca. 
2.5 for x = 10, but the Kx values still are considerably higher 
than for poly(Gly). 

Poly(D-Ala-D-Ala-L-Ala-L-Ala) has unexpectedly low 
values of A"*, being on the order of those of poly(L-Pro-L-Ala). 
As a general feature, all chains investigated, with the exception 
of poly(D-Ala-L-Ala), show significant departures from 
Gaussian distribution in the range of 6 < x < 20, lowering Kx 
up to a factor of ca. 30, as in the case of poly(L-Ala). The more 
extended the chains are, the stronger is the departure from the 
spherical Gaussian. 

The inclusion of the angular correlation factor 2Fo( 1) am­
plifies the pronounced differences in the Kx values for the in­
dividual chains even more. Hence, chains with low densities 
at r = 0 have generally a small value of 2Fo( 1), indicating an 
unfavorable angular correlation, whereas chains with high 
values in W(Q) have values of 2Fo( 1) close to 1, in some cases 
2Fo( 1) > 1, corresponding to positive angular correlations. The 
magnitude and direction of the persistence vector a were found 
to be a qualitative measure for the angular correlation for chain 
termini in polymers.4"6 This finding is confirmed by the peptide 
sequences investigated here. So, the extended poly(L-Ala) 
chain with an exceptionally large X component of the persis­
tence vector has a value of 2Fo(I) close to zero, i.e. the angular 
correlation is very unfavorable. The racemic D,L sequence, on 
the other hand, has an extremely small persistence vector and, 
consequently, 2Fo(I) is close to 1 and even shows favorable 
angular correlation (2Fo(I) > 1) for certain chain lengths. 
Table II contains Kx values for the different chains, calculated 
according to eq 4. Values labeled as "max" correspond to es­
timated maximal values of A'*. In reality, these values, which 
are difficult to calculate accurately for reasons mentioned 
above, can be smaller by several orders of magnitude. In the 
last column of Table II, ring closure probabilities are compared 
relative to GIy as standard. From these data, some predictions 
for the propensity to undergo a cyclization reaction are made 
and related to experimental evidence. The cyclization reaction 
should be most difficult for a poly(L-Ala) type chain. At 
equilibrium conditions, less than 0.01% are cyclics; conse­
quently, the cyclization step in the synthesis of an all-trans-
all'-L-Ala type compound is expected to proceed in extremely 
low yields. This prediction from the conformational properties 
of this chain is in agreement with experimental findings. For 
example, the exceptional behavior in cyclization experiments 
of this type of peptide sequence has been observed frequently.16 

As a striking example, the synthesis of an a//-L-gramicidin S 
analogue has been unsuccessful despite many efforts.17 Re-

Figure 10. Log Kx for poly(D-Ala-L-PrOd) against x. The numbers have 
the same meaning as in Figure 2, 

cently, the synthesis of a cyclic L-hexaalanine has been re­
ported.18 However, the yield has been exceptionally low. In this 
respect it is worth mentioning that for x = 6 a much higher 
value for the angular correlation factor is indicated as men­
tioned before, leading to higher Kx values. This is in general 
harmony with the fact that hexapeptides give higher yields in 
cyclization reactions compared to other chain lengths. Hence, 
the exceptional behavior of chains with six residues is at least 
qualitatively confirmed in the present calculations. On the 
opposite scale, the regularly alternating racemic sequence of 
poly(D-Ala-L-Ala) is expected to undergo a cyclization very 
readily, Kx being higher by factors of 75, 4, and 5 for x = 6, 
10, and 20, respectively, compared to poly(Gly). For x = 20, 
the tendency to form a cyclic compound is ca. 500 times higher 
than for poly(L-Ala). Interestingly, racemic sequences are a 
very common feature of naturally occurring antibiotics such 
as enniatin, gramicidin S, and valinomycin. The synthesis of 
the regularly alternating D,L sequence of the hexapeptide en­
niatin and its analogues is especially readily accomplished,19 

in harmony with the exceptionally high value of Kx for x = 6 
due to favorable angular correlations indicated in the present 
calculations. 

Further experimental evidence of the high ring closure 
probability of racemic sequences are the generally high yields 
in synthesizing these cyclic compounds; a large number of 
synthetic cyclics of this interesting class of peptides have 
therefore been reported.2'16'19 In agreement with the theo­
retical results obtained here, the synthesis of cyclo-(GIy-L-
Leu-D-Leu-Gly-Gly) and cyc/o-(Gly-L-Leu-L-Leu-Gly-Gly) 
resulted in considerably higher yields of the D,L compound. 
Similar observations were made during the synthesis of related 
sequences.20 From our results, the synthesis of cyclic peptides 
of the type (D,D,L,L), as in valinomycin, should be considerably 
more difficult compared to the (D,L) type. Cyclic peptides 
containing GIy residues also have high values of Kx, i.e. rings 
containing GIy should be easily formed. The Kx values for the 
poly(Gly) chain are considerably lower compared to the D1L 
chain, but still higher by a factor of ca. 100 than poly(L-Ala). 
Consequently, a large variety of cyclic peptides containing GIy 
residues have been synthesized.16'21 Even the incorporation 
of only one GIy residue in an (L-AIa) hexapeptide was suffi­
cient to raise the cyclization yield several times.21 
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Despite the fact that Pro restricts the conformation space 
of its predecessor to extended conformations, its incorporation 
in an L-Ala-type chain raises Kx significantly due to the ac­
cessibility of more compact conformations for Pro. The suc­
cessful synthesis of the decapeptide antamanid,22 which con­
tains four Pro residues, is therefore not an unexpected re­
sult. 

The general agreement between theoretical predictions of 
the propensity for cyclization and the experimental evidence 
indicates that the density distribution W(O) of the end-to-end 
distance r and the angular correlation factor 2Fn(I) are major 
factors in determining Kx. It should be emphasized that our 
results were obtained by assuming a random-coil conformation 
of the peptide chain, precipitated by short-range interactions 
only. Departures from our predictions for the cyclization 
tendency of polypeptides are expected when the experimental 
conditions chosen for the cyclization step are such that long-
range interactions, e.g. conditions which enhance the onset of 
a secondary structure, are no longer negligible. 
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Communications to the Editor 

Single-Crystal Susceptibilities of an S = \ Iron(III), 
Insulating Ferromagnet 

Sir: 

Several studies1-2 have been reported recently on the mole­
cules Fe(X)(S2CNR2)2 where X is a halogen and R is an alkyl 
group. These molecules are of interest because, as a result of 
their tetragonal pyramidal geometry, with C2v symmetry at 
the iron site, they are among the few examples of a spin 3/2 
ground state for trivalent iron. The most extensively studied 
example, Fe(Cl)[S2CN(C2Hs)2]i, hereafter Fe(dtc)2Cl, 
crystallizes in space group P2\/c and has a geometry in which 
the chlorine atom is at the apex of the pyramid and the iron 
atom is at the centroid, 0.62 A above the plane of the four 
sulfur atoms of the dithiocarbamate ligands.3 This particular 
example of this series of molecules is especially interesting 
because it has been reported as ordering ferromagnetically at 
2.43 K.2 Further significance attaches to Fe(dtc)2Cl in that, 
on the basis of the present measurements, and measurements 
in the critical region, this substance appears to be one of the 
very few examples of a three-dimensional Ising ferromag­
net. 

We have measured the magnetic susceptibility along the 
three principal axes in single crystals of Fe(dtc)2Cl using the 
near-zero-field mutual inductance method. The crystal 
structure is monoclinic and therefore the b axis, [010], must 
be the direction of one of the principal axes. Careful mea­
surements along various directions in the ac plane revealed that 
the other two principal axes, of maximum and minimum sus­
ceptibility in this plane, were, within an experimental uncer­
tainty estimated to be 2°, respectively, along the [101] direc­
tion and along the direction normal to [010] and [101], that 
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Figure 1. The three principal crystal magnetic susceptibilities of Fe-
(dtchCl. Circles, triangles, and squares are experimental data along the 
[010], (101), and [101] axes, respectively. The curves are the best fits to 
the data with the parameters given in the text. The inset shows the sus­
ceptibility in the [101] direction at low temperatures; these data were 
obtained using a 1-mg crystal and have not been corrected for demagne­
tization. 

is the direction normal to the (101) plane. These results, cor­
rected for demagnetization, appear in Figure 1. The suscep­
tibility along the [101] direction increases very rapidly with 
decreasing temperature until, just below 2.47 K, it attains an 
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